Datensatz zum BIP pro Kopf (bip
) und dem Kapitalstock pro Kopf (k
) von 133 verschiedenen Ländern weltweit in USD für das Jahr 2014. Daten stammen aus den Penn World Tables.
dummy_k
), für jedes Land mit:pwt <- pwt %>% mutate(dummy_k = ifelse(k>mean(pwt$k),1,0), dummy_k1 = ifelse(k<=quantile(pwt$k, probs = 0.25),1,0), dummy_k2 = ifelse(k>quantile(pwt$k, probs = c(0.25)) & k<=quantile(pwt$k, probs = c(0.5)),1,0), dummy_k3 = ifelse(k>quantile(pwt$k, probs = c(0.5)) & k<=quantile(pwt$k, probs = c(0.75)),1,0), dummy_k4 = ifelse(k>quantile(pwt$k, probs = c(0.75)),1,0)) %>% select(country, bip, k, dummy_k, dummy_k1, dummy_k2, dummy_k3, dummy_k4)skim(pwt) %>% yank("numeric")
## ## ── Variable type: numeric ──────────────────────────────────────────────────────## skim_variable n_missing complete_rate mean sd p0 p25 p50## 1 bip 0 1 22009. 23156. 570. 7106. 15913.## 2 k 0 1 82935. 80522. 1105. 17785. 51825.## 3 dummy_k 0 1 0.361 0.482 0 0 0 ## 4 dummy_k1 0 1 0.256 0.438 0 0 0 ## 5 dummy_k2 0 1 0.248 0.434 0 0 0 ## 6 dummy_k3 0 1 0.248 0.434 0 0 0 ## 7 dummy_k4 0 1 0.248 0.434 0 0 0 ## p75 p100 hist ## 1 30794. 163294. ▇▂▁▁▁## 2 141022. 423284. ▇▂▂▁▁## 3 1 1 ▇▁▁▁▅## 4 1 1 ▇▁▁▁▃## 5 0 1 ▇▁▁▁▂## 6 0 1 ▇▁▁▁▂## 7 0 1 ▇▁▁▁▂
y=β0+β1∗x+u
Dependent variable: | |
bip | |
k | 0.244*** |
(0.013) | |
Constant | 1,768.036 |
(1,533.344) | |
Observations | 133 |
R2 | 0.720 |
Adjusted R2 | 0.718 |
Residual Std. Error | 12,294.180 (df = 131) |
F Statistic | 337.270*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗x+u
Dependent variable: | |
bip | |
k | 0.244*** |
(0.013) | |
Constant | 1,768.036 |
(1,533.344) | |
Observations | 133 |
R2 | 0.720 |
Adjusted R2 | 0.718 |
Residual Std. Error | 12,294.180 (df = 131) |
F Statistic | 337.270*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β1 Einheiten in Verbindung gebracht.
log(y)=β0+β1∗log(x)+u
Dependent variable: | |
log(bip) | |
log(k) | 0.815*** |
(0.024) | |
Constant | 0.776*** |
(0.263) | |
Observations | 133 |
R2 | 0.895 |
Adjusted R2 | 0.894 |
Residual Std. Error | 0.368 (df = 131) |
F Statistic | 1,113.512*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
log(y)=β0+β1∗log(x)+u
Dependent variable: | |
log(bip) | |
log(k) | 0.815*** |
(0.024) | |
Constant | 0.776*** |
(0.263) | |
Observations | 133 |
R2 | 0.895 |
Adjusted R2 | 0.894 |
Residual Std. Error | 0.368 (df = 131) |
F Statistic | 1,113.512*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um β1 Prozent in Verbindung gebracht.
log(y)=β0+β1∗x+u
Dependent variable: | |
log(bip) | |
k | 0.00001*** |
(0.00000) | |
Constant | 8.556*** |
(0.085) | |
Observations | 133 |
R2 | 0.642 |
Adjusted R2 | 0.639 |
Residual Std. Error | 0.680 (df = 131) |
F Statistic | 234.609*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
log(y)=β0+β1∗x+u
Dependent variable: | |
log(bip) | |
k | 0.00001*** |
(0.00000) | |
Constant | 8.556*** |
(0.085) | |
Observations | 133 |
R2 | 0.642 |
Adjusted R2 | 0.639 |
Residual Std. Error | 0.680 (df = 131) |
F Statistic | 234.609*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β1∗100 Prozent in Verbindung gebracht.
y=β0+β1∗log(x)+u
Dependent variable: | |
bip | |
log(k) | 12,422.670*** |
(1,092.941) | |
Constant | -110,876.500*** |
(11,778.320) | |
Observations | 133 |
R2 | 0.497 |
Adjusted R2 | 0.493 |
Residual Std. Error | 16,493.040 (df = 131) |
F Statistic | 129.192*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗log(x)+u
Dependent variable: | |
bip | |
log(k) | 12,422.670*** |
(1,092.941) | |
Constant | -110,876.500*** |
(11,778.320) | |
Observations | 133 |
R2 | 0.497 |
Adjusted R2 | 0.493 |
Residual Std. Error | 16,493.040 (df = 131) |
F Statistic | 129.192*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um β1100 Einheiten in Verbindung gebracht.
y=β0+β1∗Ix+u
Dependent variable: | |
bip | |
dummy_k | 32,933.830*** |
(3,054.932) | |
Constant | 10,122.740*** |
(1,835.255) | |
Observations | 133 |
R2 | 0.470 |
Adjusted R2 | 0.466 |
Residual Std. Error | 16,920.210 (df = 131) |
F Statistic | 116.220*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗Ix+u
Dependent variable: | |
bip | |
dummy_k | 32,933.830*** |
(3,054.932) | |
Constant | 10,122.740*** |
(1,835.255) | |
Observations | 133 |
R2 | 0.470 |
Adjusted R2 | 0.466 |
Residual Std. Error | 16,920.210 (df = 131) |
F Statistic | 116.220*** (df = 1; 131) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Alle Beobachtungen bei denen x = 1 ist, wird im Durchschnitt mit einem höherem y von β1 Einheiten in Verbindung gebracht.
y=β0+β1∗Ix1+β2∗Ix2+β3∗Ix3+u
Dependent variable: | |
bip | |
dummy_k1 | -44,545.740*** |
(3,919.828) | |
dummy_k2 | -36,450.900*** |
(3,948.972) | |
dummy_k3 | -25,008.320*** |
(3,948.972) | |
Constant | 48,645.540*** |
(2,792.345) | |
Observations | 133 |
R2 | 0.531 |
Adjusted R2 | 0.520 |
Residual Std. Error | 16,040.800 (df = 129) |
F Statistic | 48.690*** (df = 3; 129) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗Ix1+β2∗Ix2+β3∗Ix3+u
Dependent variable: | |
bip | |
dummy_k1 | -44,545.740*** |
(3,919.828) | |
dummy_k2 | -36,450.900*** |
(3,948.972) | |
dummy_k3 | -25,008.320*** |
(3,948.972) | |
Constant | 48,645.540*** |
(2,792.345) | |
Observations | 133 |
R2 | 0.531 |
Adjusted R2 | 0.520 |
Residual Std. Error | 16,040.800 (df = 129) |
F Statistic | 48.690*** (df = 3; 129) |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Alle Beobachtungen bei denen x1 = 1 ist, wird im Durchschnitt mit einem höherem/niedrigerem y von β1 Einheiten über/unter dem Basislevel in Verbindung gebracht.
Datensatz zum BIP pro Kopf (bip
) und dem Kapitalstock pro Kopf (k
) von 133 verschiedenen Ländern weltweit in USD für das Jahr 2014. Daten stammen aus den Penn World Tables.
dummy_k
), für jedes Land mit:pwt <- pwt %>% mutate(dummy_k = ifelse(k>mean(pwt$k),1,0), dummy_k1 = ifelse(k<=quantile(pwt$k, probs = 0.25),1,0), dummy_k2 = ifelse(k>quantile(pwt$k, probs = c(0.25)) & k<=quantile(pwt$k, probs = c(0.5)),1,0), dummy_k3 = ifelse(k>quantile(pwt$k, probs = c(0.5)) & k<=quantile(pwt$k, probs = c(0.75)),1,0), dummy_k4 = ifelse(k>quantile(pwt$k, probs = c(0.75)),1,0)) %>% select(country, bip, k, dummy_k, dummy_k1, dummy_k2, dummy_k3, dummy_k4)skim(pwt) %>% yank("numeric")
## ## ── Variable type: numeric ──────────────────────────────────────────────────────## skim_variable n_missing complete_rate mean sd p0 p25 p50## 1 bip 0 1 22009. 23156. 570. 7106. 15913.## 2 k 0 1 82935. 80522. 1105. 17785. 51825.## 3 dummy_k 0 1 0.361 0.482 0 0 0 ## 4 dummy_k1 0 1 0.256 0.438 0 0 0 ## 5 dummy_k2 0 1 0.248 0.434 0 0 0 ## 6 dummy_k3 0 1 0.248 0.434 0 0 0 ## 7 dummy_k4 0 1 0.248 0.434 0 0 0 ## p75 p100 hist ## 1 30794. 163294. ▇▂▁▁▁## 2 141022. 423284. ▇▂▂▁▁## 3 1 1 ▇▁▁▁▅## 4 1 1 ▇▁▁▁▃## 5 0 1 ▇▁▁▁▂## 6 0 1 ▇▁▁▁▂## 7 0 1 ▇▁▁▁▂
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |