Datensatz zum BIP pro Kopf (bip) und dem Kapitalstock pro Kopf (k) von 133 verschiedenen Ländern weltweit in USD für das Jahr 2014. Daten stammen aus den Penn World Tables.
dummy_k), für jedes Land mit:pwt <- pwt %>% mutate(dummy_k = ifelse(k>mean(pwt$k),1,0), dummy_k1 = ifelse(k<=quantile(pwt$k, probs = 0.25),1,0), dummy_k2 = ifelse(k>quantile(pwt$k, probs = c(0.25)) & k<=quantile(pwt$k, probs = c(0.5)),1,0), dummy_k3 = ifelse(k>quantile(pwt$k, probs = c(0.5)) & k<=quantile(pwt$k, probs = c(0.75)),1,0), dummy_k4 = ifelse(k>quantile(pwt$k, probs = c(0.75)),1,0)) %>% select(country, bip, k, dummy_k, dummy_k1, dummy_k2, dummy_k3, dummy_k4)skim(pwt) %>% yank("numeric")
## ## ── Variable type: numeric ──────────────────────────────────────────────────────## skim_variable n_missing complete_rate mean sd p0 p25 p50## 1 bip 0 1 22009. 23156. 570. 7106. 15913.## 2 k 0 1 82935. 80522. 1105. 17785. 51825.## 3 dummy_k 0 1 0.361 0.482 0 0 0 ## 4 dummy_k1 0 1 0.256 0.438 0 0 0 ## 5 dummy_k2 0 1 0.248 0.434 0 0 0 ## 6 dummy_k3 0 1 0.248 0.434 0 0 0 ## 7 dummy_k4 0 1 0.248 0.434 0 0 0 ## p75 p100 hist ## 1 30794. 163294. ▇▂▁▁▁## 2 141022. 423284. ▇▂▂▁▁## 3 1 1 ▇▁▁▁▅## 4 1 1 ▇▁▁▁▃## 5 0 1 ▇▁▁▁▂## 6 0 1 ▇▁▁▁▂## 7 0 1 ▇▁▁▁▂y=β0+β1∗x+u
| Dependent variable: | |
| bip | |
| k | 0.244*** |
| (0.013) | |
| Constant | 1,768.036 |
| (1,533.344) | |
| Observations | 133 |
| R2 | 0.720 |
| Adjusted R2 | 0.718 |
| Residual Std. Error | 12,294.180 (df = 131) |
| F Statistic | 337.270*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗x+u
| Dependent variable: | |
| bip | |
| k | 0.244*** |
| (0.013) | |
| Constant | 1,768.036 |
| (1,533.344) | |
| Observations | 133 |
| R2 | 0.720 |
| Adjusted R2 | 0.718 |
| Residual Std. Error | 12,294.180 (df = 131) |
| F Statistic | 337.270*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β1 Einheiten in Verbindung gebracht.
log(y)=β0+β1∗log(x)+u
| Dependent variable: | |
| log(bip) | |
| log(k) | 0.815*** |
| (0.024) | |
| Constant | 0.776*** |
| (0.263) | |
| Observations | 133 |
| R2 | 0.895 |
| Adjusted R2 | 0.894 |
| Residual Std. Error | 0.368 (df = 131) |
| F Statistic | 1,113.512*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
log(y)=β0+β1∗log(x)+u
| Dependent variable: | |
| log(bip) | |
| log(k) | 0.815*** |
| (0.024) | |
| Constant | 0.776*** |
| (0.263) | |
| Observations | 133 |
| R2 | 0.895 |
| Adjusted R2 | 0.894 |
| Residual Std. Error | 0.368 (df = 131) |
| F Statistic | 1,113.512*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um β1 Prozent in Verbindung gebracht.
log(y)=β0+β1∗x+u
| Dependent variable: | |
| log(bip) | |
| k | 0.00001*** |
| (0.00000) | |
| Constant | 8.556*** |
| (0.085) | |
| Observations | 133 |
| R2 | 0.642 |
| Adjusted R2 | 0.639 |
| Residual Std. Error | 0.680 (df = 131) |
| F Statistic | 234.609*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
log(y)=β0+β1∗x+u
| Dependent variable: | |
| log(bip) | |
| k | 0.00001*** |
| (0.00000) | |
| Constant | 8.556*** |
| (0.085) | |
| Observations | 133 |
| R2 | 0.642 |
| Adjusted R2 | 0.639 |
| Residual Std. Error | 0.680 (df = 131) |
| F Statistic | 234.609*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β1∗100 Prozent in Verbindung gebracht.
y=β0+β1∗log(x)+u
| Dependent variable: | |
| bip | |
| log(k) | 12,422.670*** |
| (1,092.941) | |
| Constant | -110,876.500*** |
| (11,778.320) | |
| Observations | 133 |
| R2 | 0.497 |
| Adjusted R2 | 0.493 |
| Residual Std. Error | 16,493.040 (df = 131) |
| F Statistic | 129.192*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗log(x)+u
| Dependent variable: | |
| bip | |
| log(k) | 12,422.670*** |
| (1,092.941) | |
| Constant | -110,876.500*** |
| (11,778.320) | |
| Observations | 133 |
| R2 | 0.497 |
| Adjusted R2 | 0.493 |
| Residual Std. Error | 16,493.040 (df = 131) |
| F Statistic | 129.192*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um β1100 Einheiten in Verbindung gebracht.
y=β0+β1∗Ix+u
| Dependent variable: | |
| bip | |
| dummy_k | 32,933.830*** |
| (3,054.932) | |
| Constant | 10,122.740*** |
| (1,835.255) | |
| Observations | 133 |
| R2 | 0.470 |
| Adjusted R2 | 0.466 |
| Residual Std. Error | 16,920.210 (df = 131) |
| F Statistic | 116.220*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗Ix+u
| Dependent variable: | |
| bip | |
| dummy_k | 32,933.830*** |
| (3,054.932) | |
| Constant | 10,122.740*** |
| (1,835.255) | |
| Observations | 133 |
| R2 | 0.470 |
| Adjusted R2 | 0.466 |
| Residual Std. Error | 16,920.210 (df = 131) |
| F Statistic | 116.220*** (df = 1; 131) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Alle Beobachtungen bei denen x = 1 ist, wird im Durchschnitt mit einem höherem y von β1 Einheiten in Verbindung gebracht.
y=β0+β1∗Ix1+β2∗Ix2+β3∗Ix3+u
| Dependent variable: | |
| bip | |
| dummy_k1 | -44,545.740*** |
| (3,919.828) | |
| dummy_k2 | -36,450.900*** |
| (3,948.972) | |
| dummy_k3 | -25,008.320*** |
| (3,948.972) | |
| Constant | 48,645.540*** |
| (2,792.345) | |
| Observations | 133 |
| R2 | 0.531 |
| Adjusted R2 | 0.520 |
| Residual Std. Error | 16,040.800 (df = 129) |
| F Statistic | 48.690*** (df = 3; 129) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
y=β0+β1∗Ix1+β2∗Ix2+β3∗Ix3+u
| Dependent variable: | |
| bip | |
| dummy_k1 | -44,545.740*** |
| (3,919.828) | |
| dummy_k2 | -36,450.900*** |
| (3,948.972) | |
| dummy_k3 | -25,008.320*** |
| (3,948.972) | |
| Constant | 48,645.540*** |
| (2,792.345) | |
| Observations | 133 |
| R2 | 0.531 |
| Adjusted R2 | 0.520 |
| Residual Std. Error | 16,040.800 (df = 129) |
| F Statistic | 48.690*** (df = 3; 129) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |
Alle Beobachtungen bei denen x1 = 1 ist, wird im Durchschnitt mit einem höherem/niedrigerem y von β1 Einheiten über/unter dem Basislevel in Verbindung gebracht.
Datensatz zum BIP pro Kopf (bip) und dem Kapitalstock pro Kopf (k) von 133 verschiedenen Ländern weltweit in USD für das Jahr 2014. Daten stammen aus den Penn World Tables.
dummy_k), für jedes Land mit:pwt <- pwt %>% mutate(dummy_k = ifelse(k>mean(pwt$k),1,0), dummy_k1 = ifelse(k<=quantile(pwt$k, probs = 0.25),1,0), dummy_k2 = ifelse(k>quantile(pwt$k, probs = c(0.25)) & k<=quantile(pwt$k, probs = c(0.5)),1,0), dummy_k3 = ifelse(k>quantile(pwt$k, probs = c(0.5)) & k<=quantile(pwt$k, probs = c(0.75)),1,0), dummy_k4 = ifelse(k>quantile(pwt$k, probs = c(0.75)),1,0)) %>% select(country, bip, k, dummy_k, dummy_k1, dummy_k2, dummy_k3, dummy_k4)skim(pwt) %>% yank("numeric")
## ## ── Variable type: numeric ──────────────────────────────────────────────────────## skim_variable n_missing complete_rate mean sd p0 p25 p50## 1 bip 0 1 22009. 23156. 570. 7106. 15913.## 2 k 0 1 82935. 80522. 1105. 17785. 51825.## 3 dummy_k 0 1 0.361 0.482 0 0 0 ## 4 dummy_k1 0 1 0.256 0.438 0 0 0 ## 5 dummy_k2 0 1 0.248 0.434 0 0 0 ## 6 dummy_k3 0 1 0.248 0.434 0 0 0 ## 7 dummy_k4 0 1 0.248 0.434 0 0 0 ## p75 p100 hist ## 1 30794. 163294. ▇▂▁▁▁## 2 141022. 423284. ▇▂▂▁▁## 3 1 1 ▇▁▁▁▅## 4 1 1 ▇▁▁▁▃## 5 0 1 ▇▁▁▁▂## 6 0 1 ▇▁▁▁▂## 7 0 1 ▇▁▁▁▂Keyboard shortcuts
| ↑, ←, Pg Up, k | Go to previous slide |
| ↓, →, Pg Dn, Space, j | Go to next slide |
| Home | Go to first slide |
| End | Go to last slide |
| Number + Return | Go to specific slide |
| b / m / f | Toggle blackout / mirrored / fullscreen mode |
| c | Clone slideshow |
| p | Toggle presenter mode |
| t | Restart the presentation timer |
| ?, h | Toggle this help |
| Esc | Back to slideshow |